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ABSTRACT 

Dynamic stability characteristics of six Apollo-Saturn IB and V and 
one Saturn-Centaur upper stage model configurations and static stability 
characteristics of two Apollo-Saturn IB and V upper stage model con- 
figurations were obtained from M^ = 0. 5 0 to 1.40.    The primary test 
objective was to investigate the changes in dynamic stability character- 
istics as a function of pitch oscillation center.   A secondary objective 
was to compare three different model mounting techniques - sting, 
transverse rod,   and reflection plane.    The static testing resulted from, 
a suspected nonlinear phenomenon observed during the dynamic phase 
of the test.    One model configuration which was stable when the pitch 
oscillation center was ahead of a separation disk exhibited limit cycle 
oscillations when the pitch oscillation center was located aft of the 
disk. 

in 
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SECTION I 
INTRODUCTION 

This report presents the rigid body dynamic and static stability 
characteristics of several upper stage model configurations of the 
Saturn IB and V space vehicle.    The data were obtained in the Aerody- 
namic Wind Tunnel,  Transonic (IT). 

The primary test objective was to measure the model stability as a 
function of pitch oscillation center in the transonic Mach number range 
from 0. 50 to 1. 40,    This test objective resulted from an analytical study 
(Ref.   1) which predicted the possibility of statically stabilizing loads 
becoming dynamically destabilizing when the pitch oscillation center is 
located between the origin of a separated flow field and an afterbody sub- 
merged in the separated flow. 

A secondary test objective was to compare three different model 
mounting techniques - sting,  transverse rod,   and reflection plane.    The 
transverse rod supporting technique resulted from the requirement to 
oscillate the models over a wide range of pitch oscillation centers.    This 
mounting technique appeared to be the more efficient.    The reflection plane 
mounting was employed more for academic purposes of correlation than a 
principal method of obtaining data.    The sting-mounting technique was 
employed both in the dynamic and static phases of the test.    The intended 
purpose of the sting-mount dynamic test was to investigate the transverse 
rod effect on dynamic stability.    During the course of the dynamic sting- 
mount phase of the test, two configurations were observed to oscillate 
about a nonzero angle of attack when the sting was at zero pitch angle. 
Consequently,  a sting-mount,  static force and moment investigation was 
conducted to determine possible pitching-moment nonlinearities with angle 
of attack. 

The tests were conducted in two separate tunnel entries.    During the 
first entry three Apollo-Saturn IB and V upper stage and two Saturn- 
Centaur model configurations were tested on a sting-mounted,  free-pitch, 
oscillation balance.    During the second entry,  four Apollo-Saturn IB and 
V upper stage model configurations were tested on a sting-mounted static- 
force balance.    One half-model configuration mounted on a reflection plane 
was tested in free-pitch oscillation.    Comparison of test results for the 
three mounting techniques is presented in the report. 
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SECTION II 
APPARATUS 

2.1   TEST FACILITY 

The tests were conducted in Tunnel IT.    A description of the tunnel 
and associated equipment can be found in Ref.   2, 

Schematics of the test section with sting-mounted and transverse rod 
mounted models are presented in Figs,   la and b,  respectively.    Photo- 
graphs of typical model installations are presented in Fig.   2. 

2.2  TEST ARTICLE 

Six Apollo-Saturn IB and V upper stage model configurations were 
tested in free-pitch oscillation.    Two of the six configurations were tested 
statically.    In addition, two model configurations of the Saturn-Centaur 
upper stage were tested in free-pitch oscillation.    Model configuration 
descriptions are presented in Table I,  and basic model configuration draw- 
ings are shown in Fig.   3.    All Apollo-Saturn IB and V upper stage model 
configurations included the escape rocket and tower. 

The reflection plane model configuration {Fig.   3d) has one significant 
distinguishing feature from most other dynamic reflection plane models. 
The half-model is spaced away from but attached integral with the reflec- 
tion plane disk.    It was reasoned that viscous "clutch" damping would be 
measured along with aerodynamic damping if the half-model were per- 
mitted to oscillate relative to the disk.    This type of damping could possibly 
obscure the small aerodynamic damping values. 

A description of the wall-mounted,   free-pitch oscillation,  transverse 
rod balance can be found in Ref.   3.    A description of the basic sting- 
mounted,  free-pitch oscillation balance can be found in Ref.   2. 

SECTION HI 
TEST DESCRIPTION 

3.1   PROCEDURE 

3.1.1   Sting-Mounted Balances 

Both a free-pitch oscillation and static-force balance were employed. 
In the case of free oscillation testing,  the model amplitude was obtained 
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by alternate air pulses impinging on the rear "skirt'1 of the model.   After 
a desired steady-state oscillatory amplitude was obtained, the air jet 
system was valved closed and the subsequent transient oscillations 
recorded.    Static-force and moment data were obtained by pitching the 
model from -2- to 5-deg angle of attack.   A three-component, static-force 
balance was used.    Base pressure measurements were not obtained. 

3.1.2 Wall-Mounted, Transverse Rod Balance 

A mechanical cocking device provided the means by which the models 
could be released from angle of attack.    The models were usually released 
from a 4. 5-deg amplitude and the subsequent oscillations recorded. 

3.1.3 Wall-Mounted, Reflection Plane Balance 

The reflection plane model was tested on the wall-mounted,  transverse 
rod balance by suitably modifying the model attachment point,  as shown 
in Fig.   3d. 

3.1.4 General Test Conditions 

Data were obtained at Mro = 0. 50,   0.60,   0.70,   0.80,   0.90,  0.95,   1.00, 
1,05,   1. 10,  and 1.40.    The tunnel total pressure,  which varies with 
ambient pressure and temperature,  ranged from 2755 to 2887 psf.    The 
variation of Reynolds number with Mach number is presented in Fig.  4. 

3.2 DATA REDUCTION 

The free-pitch oscillation data reduction equations are presented in 
the Appendix.    Except where limit cycle amplitudes exceeded ±2 deg, the 
damping derivatives,   Cmä + Cm»,  presented corresponded to the number 
of cycles to half amplitude over the oscillation amplitude range from ±4 
to ±2 deg.   Where limit cycle amplitudes were involved, and did not ex- 
ceed ±3 deg,  the decrement measurements were obtained between ±4 and 
±3 deg.    No decrement measurements were obtained when the limit cycle 
amplitude exceeded ±3 deg. 

3.3 PRECISION OF MEASUREMENTS 

The estimated precision of the data obtained during the investigation 
is as follows: 
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Quantity Uncertainty 

a static ±0. 10 deg 

a dynamic ±0. 20 deg 

pt ±3 psf 

M„ ±0.003 

Tt ±2°R 

CA ±0.008 

Cm ±0.002 

Cm ±0.090 
a 

Cmj + Cm. ±1.00 

CN ±0.01 

u/2jr ±2 cps 

The above uncertainties are based on inaccuracies in balance,  oscillo- 
graph,  and pressure transducer measurements.    The streamwise varia- 
tion of M^, in the vicinity of the model probably did not exceed ±0. 003 at 
M    = 0. 7 (Ref.   4) and ±0.015 at Mm = 1.40. 

SECTION IV 
RESULTS AND DISCUSSION 

The test results are presented in a form,   Figs.  5 and 6, that illus- 
trates the effect of pitch oscillation center on the dynamic stability. 
Stability derivatives as a function of angle of attack for one Saturn- 
Centaur model configuration are presented in Fig.   7 for M, = 0. 70,   0. 90, 
and 0. 95.    The dynamic stability results obtained for certain model con- 
figurations mounted on the sting-supported balance,  the transverse rod 
balance,  and the reflection plane mounting are presented in Fig.  8. 
Stability derivatives for two Apollo-Saturn,   sting-mounted configurations 
are presented in Fig.   9.    In Fig.   10,   sting-mount static-force and 
moment results are presented.    Static stability derivatives obtained from 
the sting-mounted, free-pitch oscillation balance are compared with the 
corresponding results from the static data in Fig.   11. 

No quantitative static stability results were obtained from the trans- 
verse rod,  free oscillation balance.    The mechanical stiffness of the 
balance was several orders of magnitude greater than the aerodynamic 
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stiffness.    Consequently,  small changes in aerodynamic stiffness pro- 
duced no measurable differences in frequency.    Qualitatively,  however, 
the static stability increased as the model pitch oscillation center was 
moved from rear to front. 

Statically unstable models could be tested dynamically because of 
an overall balance system stability. 

4.1   VARIATION OF PITCH OSCILLATION CENTER 

The various pitch oscillation centers (see Fig.  3) were coincident 
with structural bending nodal points for the entire Apollo-Saturn IB and 
V space vehicle (Ref.   1).    It seemed reasonable that the upper stage 
aerodynamic stability contribution to the entire vehicle could be obtained 
from pitch oscillation tests where oscillation centers correspond to nodal 
points.    From Fig.  3a it can be observed that the 01 pitch oscillation 
center passes through the escape rocket ahead of the separation disk,  D. 
The 02 pitch oscillation center (Fig.  3b) passed through the escape rocket 
tower and just downstream of the disk.    The 05 pitch oscillation center 
(Fig.  3c) passed through the junction between the B^ command module 
and the skirt Si,  also downstream of the disk, but farther aft of the 02 
pitch oscillation center. 

From Ref.   1,  an analytical study of the quasi-steady transonic flow 
characteristics predicted that statically stabilizing loads could become 
dynamically destabilizing when a nodal point (pitch oscillation center) 
was between a separation source (D) and an afterbody (B^,  B^Si) immersed 
in the separated flow field.    A phase shift could arise because of the time 
lag between the instant the separation source was perturbed and the instant 
the separated flow field altered the submerged body loads,  thus causing 
instability. 

Unfortunately,  a single model configuration could not be tested at 
all three pitch oscillation centers - 01,  02,  and 05 - because of structural 
requirements for the models.    For example,  tests of a BiSj-01 configura- 
tion were prohibited because inertia loads of the B^Si portion of the model 
could have caused structural failure of the tower at the testing frequency 
of from 53 to 55 cps. 

For model configuration Bi (Table 1),   Fig.   5a shows that shifting the 
pitch oscillation center from the 01 position to the 02 position had a desta- 
bilizing effect.    As shown in Fig.   5b,  the addition of the disk at the base 
of the escape rocket {Fig.  3a) produced limit cycle oscillations throughout 
the Mach number range for the 02 pitch osculation center.    When the pitch 
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oscillation center was located at the 01 position,  the limit cycle oscilla- 
tions occurred only below Mach number 0. 8. 

In Figs.   5c and d comparison of the 02 and 05 pitch oscillation 
center results for configurations B^S^ and B^DSi are presented.    Fig- 
ure 5c shows that above M,,, = 0. 6 a shift from the 02 to 05 pitch oscilla- 
tion center corresponded to a decrease in stability for the B^Si configura- 
tion.    Similarly,  for the B^DSi configuration (Fig.   5d),  greater stability 
was observed for the 02 position. 

Summarizing the results of Figs.  5a through 5d,  an increase in static 
stability was accompanied by a corresponding increase in dynamic stability. 
To be entirely consistent with the arguments of Ref.   1,  the dynamic sta- 
bility level for the 02 position should be lower than either the 01 or 05 
level.    It is possible,  however, that the S\ skirt was not fully immersed in 
the separated flow field,   and as a result,  any destabilizing loads acting 
on the Bi module were obscured.    The stability trend from the 01 to 02 
pitch oscillation center was consistent with that reported in Ref.   1. 

In Fig.   6 the stability characteristics of two Saturn-Centaur upper 
stage configurations,   CR-IS and CR-IIS,   are presented.    The results in 
Fig.  6 showed little change in the dynamic stability parameter as the 
pitch oscillation center was shifted from the II to the I position (Fig.  3g). 

In Figs.   7 values of CmA + Cm.   for M,,, = 0. 70,  0. 90,  and 0. 95 are 
presented as a function of mean angle of attack,  a,  for the CR-II config- 
uration.    This figure is significant in that it shows a greater variation at 
small angles of attack rather than at large angles of attack. 

4.2   RESULTS OF DIFFERENT MOUNTING TECHNIQUES 

Three model mounting techniques were employed:   sting,  transverse 
rod,  and reflection plane.    However,  no single configuration was tested 
with all three techniques.    In Figs.   8a and b,   Cm • + Cm.   values for con- 
figurations BiSi and BiDSi at the 05 pitch oscillation center are compared 
for free oscillation sting and transverse rod supports.    The comparison 
is conditional by the fact that the sting-mounted data were obtained in 
the frequency range from 28 to 32 cps whereas the rod supported data 
were obtained over the range from 5 3 to 56 cps.    The quasi-steady theory 
of Ref.  1 is based upon the lag time between a separated and an attached 
flow impingement on an oscillating body.   If this concept is correct, then 
some discrepancy between the rod and sting values of Cm^  + Cm ■ in 
Fig.  8a and b might be explained as a frequency effect.    This argument 
is partially supported by the agreement shown in Fig.  8c between the 
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rod and reflection plane results of the Bi -01 configuration.    Here the 
frequency range was approximately the same (5 3 to 55 cps).    The singu- 
lar disagreement at M^ =  1. 10 is unexplained.    Unfortunately,   little 
time was available for the reflection plane phase of testing. 

A comparison of the stability derivatives of two sting-mounted con- 
figurations,   BiSi"05S and BjCSi-05,  is presented in Fig.  9.    The center 
spike,   C,   (Fig.   3c) was representative of a free-flight model tower stiff - 
ener used in ballistic range tests.    Apparently,  there was only a slight 
increase in dynamic stability,  at M„, = 0.95,  attributable to the center 
spike. 

4.3  STATIC TEST RESULTS 

As mentioned earlier in the report,  a static test was conducted to 
investigate a suspected nonlinear pitching-moment phenomenon asso- 
ciated with the BiSi-05S and BiDSi-05S configurations.    During the 
dynamic phase of the sting-support testing,  both the B^S^ and BjDSi 
models were observed to oscillate about a sometimes unrepeatable and 
intermittent static trim angle, different from zero, in the Mach number 
range from 0. 90 to 1. 10.    As shown in Figs.   10a and b,  the sting-support, 
static-force and moment investigation apparently did not reveal any abrupt 
nonlinearities in C]\j and Cm with angle of attack.    The trim angle behavior 
appears to be the result of a simple static instability.    A comparison of the 
static stability parameter,   Cm  ,  as obtained from both static and dynamic 

et 
sting-supported balances,   is presented in Figs.   11a and b for configura- 
tions BiSi and BiDSi, respectively.    The rather poor agreement might 
be the result of pressure lag in the dynamic case that is not present in the 
static case. 

SECTION V 
CONCLUSIONS AND RECOMMENDATIONS 

The effect of varying pitch oscillation center showed that the dynamic 
stability was altered.    Whether the corresponding changes in Cmi + Cm. 
values were consistent with the quasi-steady arguments of Ref.   1 was not 
resolved. 

No significant variations in the data are believed to have resulted 
from the three model mounting techniques employed:   sting,  transverse 
rod,   and reflection plane. 



AEDC-TR-66-125 

The free-pitch oscillation testing technique did not provide a suitable 
means to study the nonlinear aerodynamic stability problem associated 
with the separated flow effects.    Forced oscillation testing in which the 
aerodynamic damping torque is measured directly would afford more 
complete test results.    High response pressure measurements on a 
larger scale model might shed some light on the time dependency of pres- 
sure lag in a separated flow field. 
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APPENDIX I 
DATA REDUCTION EQUATIONS 

The free-pitch oscillation,  dynamic data reduction equations are 

80 v'T 
+ c.  ~J—       <   «6,0)1    - 

P.M^Ad f ^i 

where 

1.428 
(i : Q.2MQ

3
'

S
I   J   , r "I | 

O.H..M i L J P M     Ad 

«Wi ^J-   •   in 2,   i  =   1,2 

<u0 = Natural circular frequency 

«i = Resonant circular frequency 

n = Number of cycles to 1/2 amplitude of 0j 

C = Critical damping ratio 

Subscript Notations 

1 Wind-off 

2 Wind-on 

o Natural 

] Initial 

MODEL CONSTANTS 

Model 
Configuration 

Bx-OIR 

BiD-OIR 

BX-02R 

A = 0. 01226 ft2 

d = 0. 125 ft 

Model and Balance Inertia, 
ft-lb-sec2 x 106 

606. 5 

606. 5 

602. 6 
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Model 
Configuration 

Model and Balance Inertia, 
ft-lb-sec2 x 106 

BxD-02R 602. 6 

BiSi-02R 621.8 

BiDSi-02R 621.8 

BiSi-OSR 615. 3 

BiDSi-05R 615. 3 

BiDCSi-05R 615. 3 

Bi-OlP 695. 3 

Plate and Balance 681.9 

BiSi-05S 22. 7 

B1DSJ-05S 22. 7 

BiCSi-OSS 22. 7 

CR-IS 51. 8 

CR-IIS 44. 4 

10 
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b.   Configuration BiSl-02R, Transverse Rod Supported 

Fig. 2   Continued 
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c.   Configuration Bj-OlP,  Reflection Plane Mounted 

Fig. 2   Continued 
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e.   Transverse Rod and Reflection Plane Mounting of the Bl -01 Configuration 

Fig. 2   Concluded 
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TABLE I 
MODEL DESCRIPTION 

Configuration Pitch Center Mount 

Bl 01 R 

Bl 01 P 

BiD 01 R 

B} 02 R 

BaD 02 R 

BiSi 02 R 

BxDSi 02 R 

BJSJ 05 S* 

BiSi 05 R 

BiDSi 05 S* 

BiDSi 05 R 

BiCSi 05 S 

BiCDSi 05 R 

CR I S 

CR II s 

REMARKS: 

Notation Key 

Bl Command Module 

D Disk 

Sj Skirt 

c Center Spike 

CR Saturn-Centaur Upper Stage 

R Transverse Rod Support Balance 

S Sting Support Balance 

P Reflection Plane Mounted on 
Transverse Rod Balance 

NOTE:   For static results,  05 indicates 
moment reference center. 

*Tested both Statically and Dynamically 

Pitch Center 01 - 1. 805 in. Aft of Rocket Nose. 

Pitch Center 02 - 3. 065 in.  Aft of Rocket Nose. 

Pitch Center 05 - 4. 517 in. Aft of Rocket Nose. 

Pitch Center I     - 1. 285 in. Aft of Nose. 

Pitch Center 11   - 1. 510 in. Aft of Nose. 
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